Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation
The overall goal of PISA is to keep human workers in the loop but to support them with powerful tools.
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

Project Coordination
Dr. Klaus Schröer,
Volkswagen

Project Management
Mr. Gerhard Schreck,
Mr. Volker Katschinski
Fraunhofer IPK
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

Partner Structure

- 4 Industrial Companies
- 7 Small & Medium Enterprises
- 7 Universities / Research Institutes
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

PISA Partners

- VW
- FHG IPK
- COMAU S.p.A.
- EADS CRC F
- Senur Elektrik
- all-time-zones engineering GmbH
- BGS
- EICAS Automazione S.p.A.
- pi4_robotics GmbH
- Profactor
- Schmidt-Handling GmbH
- Visual components
- Fraunhofer Gesellschaft IPA
- Fundación Fatronik
- Technische Universität Berlin (TUB)
- Tampere University of Technology (TUT)
- Universidad Politécnica de Madrid
- Technical Research Centre of Finland VTT
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

PISA Structure

- 5 S&T oriented SP
- 3 innovation related SP
- Project Management
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

Breakthrough

- Novel Intelligent Assist Systems IAS
- Planning tools for their Integration
- Reconfigurability and Reusability of Assembly Equipment
PISA is subdivided in nine subprojects

- Subprojects 1-5: Research and Technology Development
- Subprojects 6-8: Innovation Activities
- Subproject 9: Project Coordination and Management
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

Subproject 1: Intelligent Assist System (Workplace-Sharing)

- **Robot-IAS**
 Cooperation of human workers and industrial robots on a common workplace

- **COBOT**
 Collaboration of human workers and programmable, passive robotic systems
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

Subproject 2: Intelligent Assist System (Time-Sharing)

- **HSR**
 Humanoid Service Robot applicable on a workplace designed for humans (e.g. additional work-shift for product volume peaks)
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

Subproject 3: Advanced Assembly System Design, Planning and Optimisation Tools

- Development of methods and tools based on concurrent engineering approaches, which enable the use of virtual assembly for process design and system planning.

- Integration of geometrical and non-geometrical features and knowledge from the product and assembly process.

- Inclusion of models and human-machine collaboration in the planning phase, as well as the operation of assembly lines.
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

Subproject 4: Reconfigurable and Reusable Assembly Equipment

- Development of reconfiguration concepts that support rearrangement and reuse of assembly devices and systems.

- Development of standardised hardware and software interfaces and tools enabling reconfigurability and reusability of assembly equipment.

- Design of reconfigurable & reusable assembly system components considering in particular the mechanical interfaces, condition monitoring systems and condition prediction algorithms.

- Development and prototypical implementation of distributed control system hard-, software, and IT infrastructure for reconfiguration and reuse. Development of visualisation and simulation support.
Subproject 5: Concepts, Design, Implementation, and Optimisation of Integrated Flexible Assembly Systems Prototypes (1)

- Development of assembly system concepts that meet and balance the demands in terms of flexibility, cost-efficiency and technology level.

- Specification of requirements on performance and safety of new human-assisting and enhancing assembly technology, as well as on planning methods and design tools supporting the novel technology and concepts (inputs to SP1-SP4).

- Assessment of prototype systems (outputs of SP1-SP34) according to established demands.
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation

Subproject 5: Concepts, Design, Implementation, and Optimisation of Integrated Flexible Assembly Systems Prototypes (2)

- Integration of subproject prototypes and design of overall demonstration systems, testing scenarios and evaluation criteria.

- Testing the project demonstrators and examination of benefits considering reliability, flexibility, reusability and economical aspects.

- Definition of product design guidelines to optimally support new technology.
The overall goal of PISA is to keep human workers in the loop but to support them with powerful tools.

http://www.pisa-ip.org
Flexible Assembly Systems through Workplace-Sharing and Time-Sharing Human-Machine Cooperation